A study on theory analysis and CFD simulation for design of high efficiency ceramic exchanger

Kyungseo Park*, Chong Gun Choi*, Jin Hyun Nam**, Dooghoon Shin***, Tae Yong Jung**, Sanghwan Park***, Chang-Sam Kim***

ABSTRACT

Currently, most of the recuperator using stainless steel, however, this severely limits due to high-temperature corrosion / oxidation of metallic materials and chemical erosion by impurities of fuel. Ceramics, an alternative to metals, offer the potential to high temperature (over 1300°C) and corrosive environments. However, a ceramic recuperator analysis still leaves much to be desired. The purpose of this paper is to design a optimum ceramic recuperator, considering a high degree of transfer and according to thermal stress. A analysis model is investigated as a basis for thermodynamic associated with high-temperature recuperator, and then the analysis model is used to find the optimum design factor on the variation of recuperator condition. The result of this study are as follows : Thinner fin-plate thickness reduces pressure drop and increases heat-transfer rate, however, fin-plate having very thin thickness are difficult to manufacture and a weak thermal stress.

Key Words : Ceramics, Heat Exchanger, High Temperature

<table>
<thead>
<tr>
<th>Alphabets</th>
<th>기호설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>(σ)[m²]</td>
</tr>
<tr>
<td>C</td>
<td>[W/K]</td>
</tr>
<tr>
<td>D</td>
<td>[m]</td>
</tr>
<tr>
<td>D_h</td>
<td>[m]</td>
</tr>
<tr>
<td>G</td>
<td>[kg/m²s]</td>
</tr>
<tr>
<td>H</td>
<td>[m]</td>
</tr>
<tr>
<td>k_c</td>
<td>[W/mK]</td>
</tr>
<tr>
<td>K_c</td>
<td></td>
</tr>
<tr>
<td>K_e</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>h</td>
<td>[W/m² K]</td>
</tr>
<tr>
<td>Ntu</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>[m]</td>
</tr>
<tr>
<td>R_c</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>[m]</td>
</tr>
<tr>
<td>U</td>
<td>[W/m² K]</td>
</tr>
<tr>
<td>Greeks</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>[kg/ms]</td>
</tr>
<tr>
<td>η_f</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
</tr>
<tr>
<td>Subscripts</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td></td>
</tr>
<tr>
<td>out</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

1. 서론

* 국민대학교 기계공학과 대학원
† 연락처, timi20@hanmail.net
** 국민대학교 기계 - 자동차 공학부
*** 한국과학기술연구원

산업용으로 사용되는 공업로는 대부분 연소 시 800℃~1000℃정도의 고온 배기가스가 배출되고 있기 때문에, 이들 배기가스로부터 재열을 획수
하여 에너지를 절감하고자 하는 노력이 이루어져
고 있다. 이를 위하여 연소공기를 고온으로 예열
하여 로(furnace) 내로 재무입하는 방법인 평상
사용된다[1].
현재 폐열회수에 사용되는 열교환기는 대부분
금속소재로 되어 있어 허용 배기가스 온도가 40
0°C ~ 700°C로 제한되어 있다. 이에 따라 배기가스의
온도를 낮추는 공정이 추가되어 에너지 회수 효율
이 20% 이하로 낮게 나타난다. 그러나 고온에
서 건달 수 있는 세라믹을 사용할 경우 에너지
회수효율이 30% ~ 60%로 증가하는 것으로 알려
져 있다[2].
본 연구에서는 제작의 용이성을 고려하여 단순
한 사각 원 형태(matrix 형)를 사용하였으며, 안
정성과 최대 효율을 위하여 각 설계변수에 따른
열전달 성능과 제작당 열전달을 고려하여 해석
을 수행하고 각 결과의 특성을 비교하였다.

2. 이론
2.1 해석 모델

본 세라믹 열교환기는 200 \times 200 \times 200 (mm)
크기의 모듈로 Unmixed cross-flow 방식을 사용
한다. 열교환기에 사용된 세라믹은 현재 개발 단
계에 있는 Cr3SiC 계열이며, Thermal Conductivity
는 170 W/mK 으로 알려져 있다. Cr3SiC 계열은
열변형이 적고 열차격에 떨어지며, 1200°C 정도의
배기가스에서도 사용 가능하다는 장점이 있다.
Fig. 1과 Fig. 2에서 보는 바와 같이 본 열교환기
는 최종적으로 세라믹 모듈을 적층하여 사용하게
된다. 또한 제작의 편리성을 고려하여 단순한 사
각 원 형태를 사용하였다.

Fig. 1 The ceramic heat exchanger module

가스측과 공기측의 홀 크기는 열전달 효율, 압력
강하, 제작의 난이도, 최소 허용두께를 고려하여
결정된다. 제품된 모듈 크기에서 열전달 면적을
증가시키고, 압력강하를 최소화하기 위해서는 홀
의 너비를 증가시키고, 홀의 두께를 최소화하는
것이 적절하다. 하지만 세라믹의 최소 허용 두께
및 세라믹 성형의 난이도를 고려한다면 설계조건
에 제한이 생기게 된다. 이를 위해 설계 프로그램
을 제작하였으며, 흐름성과 밀접한 인자인 홀
간거리(P)/홀 두께(D), 가스측 홀 높이(Hg)/공기
측 홀 높이(Hl), 가로방향 유로의 개수, 세로방향
유로의 개수, plate의 두께(t)를 설계인자로 선택
하였다. 설계 인자의 변화에 따른 열전달 효율, 압
력강하, 제작의 난이도 등을 비교하여 제한 조건
에서의 최적 설계를 도출하였다.

2.2 열전달 및 압력강하 해석

세라믹 열교환기의 온도 분포를 알기 위하여
선 열전달 해석이 이루어져야 한다. 유체 유동이 충
류와 난류인 경우로 분류하여 (2-1)과 (2-2)의
경험식으로서 Nusselt number를 계산한다.[3]

증류유동(Rep<2300) :

\[
Nu = 3.66 + \frac{0.19 \left[Re \cdot Pr \left(\frac{D_h}{L} \right) \right]^{0.8}}{1 + 0.117 \left[Re \cdot Pr \left(\frac{D_h}{L} \right) \right]^{10.467}}
\]

(2-1)

\[Nu = \frac{f/8(Re_D - 1000)Pr}{1 + 1.27f/8(Pr^{2/3} - 1)} \left[1 + \left(\frac{D_h}{L} \right)^{2/3} \right] \]

(2-2)

\[f = (1.82 \log_{10} Re_D - 1.64)^{-2} \]

(2-3)

본 논문에서는 성능을 열교환기 성능 해석 방법 (ε-Rtu 방법)으로 평가하였다.[6]

\[\epsilon = 1 - \exp \left(\frac{Nu_{u,0.22}}{Nu_c} - \exp(-Re_c Nu_{u,0.78}) - 1 \right) \]

(2-4)

여기에서 유용도(ε)식 (2-4)는 단일 종류 직교류에서 비 혼합유체일 경우 사용된다.

압력손실은 성 (2-5)과 같이 세라믹 열교환기의 입구와 출구사이에서 물연성을 유로마찰, 물연확
대를 고려하여 구하게 된다.[5]

\[\Delta P = \Delta P_{in} + \Delta P_{core} - \Delta P_{out} \]

(2-5)

\[\Delta P_{in} = \frac{1}{2} \rho_1 V_1^2 \left[1 - \left(\frac{A_c}{A_{fr}} \right)^2 \right] + \frac{1}{2} \rho_1 V_1^2 K_c \]

(2-6)

\[\Delta P_{out} = \frac{1}{2} \rho_2 V_2^2 \left[1 - \left(\frac{A_c}{A_{fr}} \right)^2 \right] + \frac{1}{2} \rho_2 V_2^2 K_c \]

(2-7)

Kc와 Ke는 실험에서 놓는 값으로 결정된 값들을 사용하였다.[7]

\[\Delta P_{core} = \frac{1}{2} \rho_m V_m^2 \left(\frac{L}{D_h} \right) + \left(\rho_3 V_3^2 - \rho_1 V_1^2 \right) \]

(2-8)

본 해석에서 연구는 메탄을 사용하며, 유량을 0.01 kg/s, 외부 공기비를 1.1로 한다. 또한 공기의 입구 운도와 고온 배기기의 입구온도는 각각 500℃와 1200℃로 하였다. 이는 3-pass일 경우를 감안하여 공기의 예상온도를 설정한 것이 다.

2.3 CFD 유동해석

최적 설계를 위해 세라믹 구조체의 운도구배에 따른 열전력을 타고 해석을 요구되며, 이론 해석
방법으로는 분포를 예측하기가 어렵다. 이에 CFD 유동해석 방법을 사용하여 운도분포를 파악하고자 하였다.

유체 운동저계가 가능한 CFD 상용 코드인 FLUENT6.2를 사용하였으며, 정상상태, k-ε 난류모델을 적용하여, 세라믹 코어의 운도구배를 해석하였다.[8]

해석 모델 형상은 Fig. 3에 나타내었으며, 계산셀은 약 20만 셀로 구성되어 있다. 총 셀 2500 개로 설정되어 있으므로 해석 시 반복 경계 조건을 적용하 여 해석하였다. 각 셀은 동일한 조건으로 작동한 다고 가정한다.

모든 조건을 이론해석과 동일하게 설정함으로써 이론 설계의 결과와 비교하여, 타당성을 검증하 였다.

Fig. 3 Geometry of CFD analysis

3. 결과 및 고찰

3.1 설계인자 선정
최적의 설계 인자를 선정하기 위해 하나의 설계 인자에 대한 용간담 효율, 압력강하, 제작의 난이 도의 변화를 비교하였다. 선정된 각각의 최적 설 계인자는 상호보완을 거쳐 최종 설계에 사용된 다.

Fig. 3 ~ Fig. 7에 나타낸 각 설계인자는 열 교환기의 형상이 바뀌면서 유체의 유입속도가 변 하기 때문에 압력강하에 영향을 미치며, 제작량 열전달율(\(Q/V\))에는 큰 영향이 없는 것으로 나 타났다. 압력강하는 속도의 제곱에 비례하며, 설 계인자의 변화에 속도가 변하면서 압력이 영향을 받는 것이다.

Fig. 3에 나타난 결과에서 보는바와 같이 \(Q/V\) 는 큰 영향이 없으며, 압력강하 역시 Hg/Ha 비 율이 1 ~ 2 일 경우를 제외한다면, 유로의 크기 가 한쪽으로 편중되어 압력손실이 증가하게 된 다. 즉 단위로 세라믹 모듈을 제작한다는 점을 고려한다면, Hg/Ha 비율을 1로 설계하는 것이 적절할 것으로 보인다.

Fig. 4에서는 화 간거리가 화의 두께보다 3배 이상 커질 경우 압력강하는 감소하는 방향으로 진행 된다. 이는 유체가 지나는 화의 크기가 증 가하면서 압력손실이 작아지기 때문이다. 하지만 화의 두께가 5mm 미만으로 되면 제작상의 문제 가 발생할 수 있으므로 3.5배 미만으로 설계하는 것이 적절하다.

Fig. 5에 나타난듯이 유로의 개수가 늘어나더라도 압력손실과 열전달율의 변화가 거의 없음을 보여주고 있다. 이는 유로의 개수의 증가는 독단 적으로는 큰 영향을 주지 못함을 예측해 볼 수 있다. 가로방향의 유로의 개수는 다른 인자와의 상호보완적인 단계에서 적절한 설계가 이루어져야 한다.

Fig. 6에 나타낸 세로방향의 유로의 개수 변화 는 가로방향의 유로의 개수 변화보다 압력손실이 급변하는 경향을 보여준다. 이는 구조적인 측면 에서 가스와 공기층 유호가 교대로 적층되는 방 법을 사용하기 때문이다. 구체적으로 보면, 중의 개수가 증가함에 따라 표면적은 증가하나 유체가 지나가는 유로의 넓이는 상대적으로 작아지게 되어 열전달율과 압력손실이 동시에 증가하고 있 다. 또한, 중의 개수가 양쪽을 합쳐 16개 이상일 경우 열전달율의 기울기는 감소하나 반대로 압력 손실은 증가한다. 그러므로 각 유로 중의 개수를 9이상으로 하면 성능 개선효과는 상대적으로 줄 어들기 때문에 중 개수는 9개가 적당한 것으로 사료된다.

마지막으로 판(plate)의 두께에 따른 압력손실 및 열전달율 결과는 Fig. 7에 나타내었다. 판 (plate) 두께 역시 앞서 언급한 세로방향의 유로 개수 변화와 비슷한 결과를 보여주고 있다. 그래 프에서 볼 수 있듯이 6mm를 넘는 순간 압력은 급격하게 상승한다. 이는 유로의 단면적이 작아 지면서 속도의 상승으로 인한 압력손실이 급격하 게 변하는 것으로 보인다. 결국, 판(plate) 두께 는 알무수록 좋은 결과를 나타내지만 제작의 난 이도를 고려하여 5 ~ 6mm 범위에서 결정하는 것이 적절할 것으로 보인다.
3.2 CFD 해석

Fig. 9에 나타난 바와 같이 세라믹 구조물의 온도분포는 구조물의 대각선 기준으로 구배를 형성하고 있으며, 각각 공기가 유입되고, 배출되는 벽면에서 온도구배가 가장 크게 형성되었다. 또한, 구조물의 중심은 상대적으로 온도구배가 적게 나타날음을 확인할 수 있었다. 하지만 전체적으로 온도구배가 110 K/약 28 cm = 3.928 K/cm 으로 세라믹의 한계 열응력에 비해 적은 변화가 일어나므로 온도구배 변화를 고려한 설계조건은 큰 비중을 두지 않아도 될 것으로 사료된다.

Fig. 10에서 보듯이 세라믹 유로내의 압력순실은 약 73.4 mmH2O로 매우 작은 것으로 나타났다. 이는 유로내의 압력순실은 매우 미미하며, 실제로는 세라믹 유로의 입구 형태에 따라서 대부분의 압력강하가 결정됨을 의미한다. 세라믹 설계 시 유로의 돌연 축소 및 돌연 확대에 따른 압력강하에 대한 고려가 필요한 것으로 보아진다. 여기서 이론해석과 CFD해석을 비교함으로써 설계결과를 확인하였다.
4. 결 론

200 × 200 × 200 (mm)의 세라믹 열교환기에 서 열전달율과 압력강하량을 최소화하는 최적 설 계 인자를 도출하는 연구결과를 얻었다.

(1) 열전달율과 압력강하에 영향을 미치는 설계 인자는 세로방향 유로의 개수, 가스측 흐름 높이(H_p)/공기측 흐름 높이(H_a), 흐름 간격(P)/원 두께(D), 가로방향 유로의 개수, plate의 두
께(t) 순으로 나타났다.
(2) 각 설계인자들은 밀집한 관계를 유지하고 있 으므로, 본 논문에서는 상호관계를 유지하면 서 최적 인자들을 도출하였다.
(3) CFD해석결과 열유동은 배기가스와 공기의 입구쪽에서 서로 만나는 곳이 가장 높게 관 축되었으며, crack 발생 예상지역으로 판단
된다.
(4) 세라믹의 두께가 약을수록 압력 강하량은 줄 고, 열전달량은 상승하는 경향을 보이나, 나
무 약은 세라믹은 제작상 어려움과 구조적
강도가 약해지므로, 적당한 두께를 유지해야 한다.

본 논문의 결과는 세라믹 열교환기 설계 시 최 적설계 인자를 설정하는 데, 기본 자료로 활용할 수 있을 것이다.

후 기

이 연구는 에너지관리청단 에너지·자원기술개발사업 (과제번호 : 2007-M-CC-12-P-12-0-000-2007) 지 원으로 수행되었습니다.

참고문헌